Skip to main content

Selina Concise Mathematics Class 8 ICSE Solutions Chapter 17 Special Types of Quadrilaterals

Selina Concise Mathematics Class 8 ICSE Solutions Chapter 17 Special Types of Quadrilaterals

Selina Publishers Concise Mathematics Class 8 ICSE Solutions Chapter 17 Special Types of Quadrilaterals


Special Types of Quadrilaterals Exercise 17 – Selina Concise Mathematics Class 8 ICSE Solutions

Question 1.
In parallelogram ABCD, ∠A = 3 times ∠B. Find all the angles of the parallelogram. In the same parallelogram, if AB = 5x – 7 and CD = 3x +1 ; find the length of CD.
Solution:

Let ∠B = x
∠A = 3 ∠B = 3x
AD||BC
∠A + ∠B = 180°
3x + x = 180°
⇒ 4x = 180°
⇒ x = 45°
∠B = 45°
∠A = 3x = 3 x 45 = 135°
and ∠B = ∠D = 45°
opposite angles of || gm are equal.
∠A = ∠C = 135°
opposite sides of //gm are equal.
AB = CD
5x – 7 = 3x + 1
⇒ 5x – 3x = 1+7
⇒ 2x = 8
⇒ x = 4
CD = 3 x 4+1 = 13
Hence 135°, 45°, 135° and 45° ; 13

Question 2.
In parallelogram PQRS, ∠Q = (4x – 5)° and ∠S = (3x + 10)°. Calculate : ∠Q and ∠R.
Solution:
In parallelogram PQRS,
∠Q = (4x – 5)° and ∠S = (3x + 10)°

opposite ∠s of //gm are equal.
∠Q = ∠S
4x – 5 = 3x + 10
4x – 3x = 10+5
x = 15
∠Q = 4x – 5 =4 x 15 – 5 = 55°
Also ∠Q + ∠R = 180°
55° + ∠R = 180°
∠R = 180°-55° = 125°
∠Q = 55° ; ∠R = 125°

Question 3.
In rhombus ABCD ;
(i) if ∠A = 74° ; find ∠B and ∠C.
(ii) if AD = 7.5 cm ; find BC and CD.
Solution:
AD || BC
∠A + ∠B = 180°
74° + ∠B = 180°
∠B =180° – 74°= 106°

opposite angles of Rhombus are equal.
∠A = ∠C = 74°
Sides of Rhombus are equal.
BC = CD = AD = 7.5 cm
(i) ∠B = 106° ; ∠C = 74°
(ii) BC = 7.5 cm and CD = 7.5 cm Ans.

Question 4.
In square PQRS :
(i) if PQ = 3x – 7 and QR = x + 3 ; find PS
(ii) if PR = 5x and QR = 9x – 8. Find QS
Solution:
(i) sides of square are equal.

PQ = QR
=> 3x – 7 = x + 3
=> 3x – x = 3 + 7
=> 2x = 10
x = 5
PS=PQ = 3x – 7 = 3 x 5 – 7 =8
(ii) PR = 5x and QS = 9x – 8

As diagonals of square are equal.
PR = QS
5x = 9x – 8
=> 5x – 9x = -8
=> -4x = -8
=> x = 2
QS = 9x – 8 = 9 x 2 – 8 =10

Question 5.
ABCD is a rectangle, if ∠BPC = 124°
Calculate : (i) ∠BAP (ii) ∠ADP

Solution:
Diagonals of rectangle are equal and bisect each other.
∠PBC = ∠PCB = x (say)
But ∠BPC + ∠PBC + ∠PCB = 180°
124° + x + x = 180°
2x = 180° – 124°
2x = 56°
=> x = 28°
∠PBC = 28°
But ∠PBC = ∠ADP [Alternate ∠s]
∠ADP = 28°
Again ∠APB = 180° – 124° = 56°
Also PA = PB
∠BAP =   (180° – ∠APB)
=   x (180°- 56°) =   x 124° = 62°
Hence (i) ∠BAP = 62° (ii) ∠ADP =28°

Question 6.
ABCD is a rhombus. If ∠BAC = 38°, find :
(i) ∠ACB
(ii) ∠DAC
(iii) ∠ADC.

Solution:
ABCD is Rhombus (Given)
AB = BC
∠BAC = ∠ACB (∠s opp. to equal sides)
But ∠BAC = 38° (Given)
∠ACB = 38°
In ∆ABC,
∠ABC + ∠BAC + ∠ACB = 180°
∠ABC + 38°+ 38° = 180°
∠ABC = 180° – 76° = 104°
But ∠ABC = ∠ADC (opp. ∠s of rhombus)
∠ADC = 104°
∠DAC = ∠DCA ( AD = CD)
∠DAC =   [180° – 104°]
∠DAC =   x 76° = 38°
Hence (i) ∠ACB = 38° (ii) ∠DAC = 38° (iii) ∠ADC = 104° Ans.

Question 7.
ABCD is a rhombus. If ∠BCA = 35°. find ∠ADC.
Solution:
Given : Rhombus ABCD in which ∠BCA = 35°

To find : ∠ADC
Proof : AD || BC
∠DAC = ∠BCA (Alternate ∠s)
But ∠BCA = 35° (Given)
∠DAC = 35°
But ∠DAC = ∠ACD ( AD = CD) & ∠DAC +∠ACD + ∠ADC = 180°
35°+ 35° + ∠ADC = 180°
∠ADC = 180° – 70° = 110°
Hence ∠ADC = 110°

Question 8.
PQRS is a parallelogram whose diagonals intersect at M.
If ∠PMS = 54°, ∠QSR = 25° and ∠SQR = 30° ; find :
(i) ∠RPS
(ii) ∠PRS
(iii) ∠PSR.
Solution:
Given : ||gm PQRS in which diagonals PR & QS intersect at M.
∠PMS = 54° ; ∠QSR = 25° and ∠SQR=30°

To find : (i) ∠RPS (ii) ∠PRS (iii) ∠PSR
Proof : QR || PS
=> ∠PSQ = ∠SQR (Alternate ∠s)
But ∠SQR = 30° (Given)
∠PSQ = 30°
In ∆SMP,
∠PMS + ∠ PSM +∠MPS = 180° or 54° + 30° + ∠RPS = 180°
∠RPS = 180°- 84° = 96°
Now ∠PRS + ∠RSQ = ∠PMS
∠PRS + 25° =54°
∠PRS = 54° – 25° = 29°
∠PSR = ∠PSQ + ∠RSQ = 30°+25° = 55°
Hence (i) ∠RPS = 96° (ii) ∠PRS = 29° (iii) ∠PSR = 55°

Question 9.
Given : Parallelogram ABCD in which diagonals AC and BD intersect at M.
Prove : M is mid-point of LN.
Solution:

Proof : Diagonals of //gm bisect each other.
MD = MB
Also ∠ADB = ∠DBN (Alternate ∠s)
& ∠DML = ∠BMN (Vert. opp. ∠s)
∆DML = ∆BMN
LM = MN
M is mid-point of LN.
Hence proved.

Question 10.
In an Isosceles-trapezium, show that the opposite angles are supplementary.
Solution:

Given : ABCD is isosceles trapezium in which AD = BC
To Prove : (i) ∠A + ∠C = 180°
(ii) ∠B + ∠D = 180°
Proof : AB || CD.
=> ∠A + ∠D = 180°
But ∠A = ∠B [Trapezium is isosceles)]
∠B + ∠D = 180°
Similarly ∠A + ∠C = 180°
Hence the result.

Question 11.
ABCD is a parallelogram. What kind of quadrilateral is it if :
(i) AC = BD and AC is perpendicular to BD?
(ii) AC is perpendicular to BD but is not equal to it ?
(iii) AC = BD but AC is not perpendicular to BD ?
Solution:


Question 12.
Prove that the diagonals of a parallelogram bisect each other.
Solution:

Given : ||gm ABCD in which diagonals AC and BD bisect each other.
To Prove : OA = OC and OB = OD
Proof : AB || CD (Given)
∠1 = ∠2 (alternate ∠s)
∠3 = ∠4 = (alternate ∠s)
and AB = CD (opposite sides of //gm)
∆COD = ∆AOB (A.S.A. rule)
OA = OC and OB = OD
Hence the result.

Question 13.
If the diagonals of a parallelogram are of equal lengths, the parallelogram is a rectangle. Prove it.
Solution:

Given : //gm ABCD in which AC = BD
To Prove : ABCD is rectangle.
Proof : In ∆ABC and ∆ABD
AB = AB (Common)
AC = BD (Given)
BC = AD (opposite sides of ||gm)
∆ABC = ∆ABD (S.S.S. Rule)
∠A = ∠B
But AD // BC (opp. sides of ||gm are ||)
∠A + ∠B = 180°
∠A = ∠B = 90°
Similarly ∠D = ∠C = 90°
Hence ABCD is a rectangle.

Question 14.
In parallelogram ABCD, E is the mid-point of AD and F is the mid-point of BC. Prove that BFDE is a parallelogram.
Solution:

Given : //gm ABCD in which E and F are mid-points of AD and BC respectively.
To Prove : BFDE is a ||gm.
Proof : E is mid-point of AD. (Given)
DE =   AD
Also F is mid-point of BC (Given)
BF =   BC
But AD = BC (opp. sides of ||gm)
BF = DE
Again AD || BC
=> DE || BF
Now DE || BF and DE = BF
Hence BFDE is a ||gm.

Question 15.
In parallelogram ABCD, E is the mid-point of side AB and CE bisects angle BCD. Prove that :
(i) AE = AD,
(ii) DE bisects and ∠ADC and
(iii) Angle DEC is a right angle.
Solution:

Given : ||gm ABCD in which E is mid-point of AB and CE bisects ZBCD.
To Prove : (i) AE = AD
(ii) DE bisects ∠ADC
(iii) ∠DEC = 90°
Const. Join DE
Proof : (i) AB || CD (Given)
and CE bisects it.
∠1 = ∠3 (alternate ∠s) ……… (i)
But ∠1 = ∠2 (Given) …………. (ii)
From (i) & (ii)
∠2 = ∠3
BC = BE (sides opp. to equal angles)
But BC = AD (opp. sides of ||gm)
and BE = AE (Given)
AD = AE
∠4 = ∠5 (∠s opp. to equal sides)
But ∠5 = ∠6 (alternate ∠s)
=> ∠4 = ∠6
DE bisects ∠ADC.
Now AD // BC
=> ∠D + ∠C = 180°
2∠6+2∠1 = 180°
DE and CE are bisectors.
∠6 + ∠1 = 
∠6 + ∠1 = 90°
But ∠DEC + ∠6 + ∠1 = 180°
∠DEC + 90° = 180°
∠DEC = 180° – 90°
∠DEC = 90°
Hence the result.

Question 16.
In the following diagram, the bisectors of interior angles of the parallelogram PQRS enclose a quadrilateral ABCD.

Show that:
(i) ∠PSB + ∠SPB = 90°
(ii) ∠PBS = 90°
(iii) ∠ABC = 90°
(iv) ∠ADC = 90°
(v) ∠A = 90°
(vi) ABCD is a rectangle
Thus, the bisectors of the angles of a parallelogram enclose a rectangle.
Solution:
Given : In parallelogram ABCD bisector of angles P and Q, meet at A, bisectors of ∠R and ∠S meet at C. Forming a quadrilateral ABCD as shown in the figure.
To prove :
(i) ∠PSB + ∠SPB = 90°
(ii) ∠PBS = 90°
(iii) ∠ABC = 90°
(iv) ∠ADC = 90°
(v) ∠A = 9°
(vi) ABCD is a rectangle
Proof : In parallelogram PQRS,
PS || QR (opposite sides)
∠P +∠Q = 180°
and AP and AQ are the bisectors of consecutive angles ∠P and ∠Q of the parallelogram
∠APQ + ∠AQP =   x 180° = 90°
But in ∆APQ,
∠A + ∠APQ + ∠AQP = 180° (Angles of a triangle)
∠A + 90° = 180°
∠A = 180° – 90°
(v) ∠A = 90°
Similarly PQ || SR
∠PSB + SPB = 90°
(ii) and ∠PBS = 90°
But, ∠ABC = ∠PBS (Vertically opposite angles)
(iii) ∠ABC = 90°
Similarly we can prove that
(iv) ∠ADC = 90° and ∠C = 90°
(vi) ABCD is a rectangle (Each angle of a quadrilateral is 90°)
Hence proved.

Question 17.
In parallelogram ABCD, X and Y are midpoints of opposite sides AB and DC respectively. Prove that:
(i) AX = YC
(ii) AX is parallel to YC
(iii) AXCY is a parallelogram.
Solution:
Given : In parallelogram ABCD, X and Y are the mid-points of sides AB and DC respectively AY and CX are joined

To prove :
(i) AX = YC
(ii) AX is parallel to YC
(iii) AXCY is a parallelogram
Proof : AB || DC and X and Y are the mid-points of the sides AB and DC respectively
(i) AX = YC (   of opposite sides of a parallelogram)
(ii) and AX || YC
(iii) AXCY is a parallelogram (A pair of opposite sides are equal and parallel)
Hence proved.

Question 18.
The given figure shows parallelogram ABCD. Points M and N lie in diagonal BD such that DM = BN.

Prove that:
(i) ∆DMC = ∆BNA and so CM = AN
(ii) ∆AMD = ∆CNB and so AM CN
(iii) ANCM is a parallelogram.
Solution:
Given : In parallelogram ABCD, points M and N lie on the diagonal BD such that DM = BN
AN, NC, CM and MA are joined
To prove :
(i) ∆DMC = ∆BNA and so CM = AN
(ii) ∆AMD = ∆CNB and so AM = CN
(iii) ANCM is a parallelogram
Proof :
(i) In ∆DMC and ∆BNA.
CD = AB (opposite sides of ||gm ABCD)
DM = BN (given)
∠CDM = ∠ABN (alternate angles)
∆DMC = ∆BNA (SAS axiom)
CM =AN (c.p.c.t.)
Similarly, in ∆AMD and ∆CNB
AD = BC (opposite sides of ||gm)
DM = BN (given)
∠ADM = ∠CBN – (alternate angles)
∆AMD = ∆CNB (SAS axiom)
AM = CN (c.p.c.t.)
(iii) CM = AN and AM = CN (proved)
ANCM is a parallelogram (opposite sides are equal)
Hence proved.

Question 19.
The given figure shows a rhombus ABCD in which angle BCD = 80°. Find angles x and y.

Solution:
In rhombus ABCD, diagonals AC and BD bisect each other at 90°
∠BCD = 80°
Diagonals bisect the opposite angles also ∠BCD = ∠BAD (Opposite angles of rhombus)
∠BAD = 80° and ∠ABC = ∠ADC = 180° – 80° = 100°
Diagonals bisect opposite angles
∠OCB or ∠PCB =   = 40°
In ∆PCM,
Ext. CPD = ∠OCB + ∠PMC
110° = 40° + x
=> x = 110° – 40° = 70°
and ∠ADO =   ∠ADC =   x 100° = 50°
Hence x = 70° and y = 50°

Question 20.
Use the information given in the alongside diagram to find the value of x, y and z.

Solution:
ABCD is a parallelogram and AC is its diagonal which bisects the opposite angle
Opposite sides of a parallelogram are equal
3x + 14 = 2x + 25
=> 3x – 2x = 25 – 14
=> x = 11
∴ x = 11 cm
∠DCA = ∠CAB (Alternate angles)
y + 9° = 24
y = 24° – 9° = 15°
∠DAB = 3y° + 5° + 24° = 3 x 15 + 5 + 24° = 50° + 24° = 74°
∠ABC =180°- ∠DAB = 180° – 74° = 106°
z = 106°
Hence x = 11 cm, y = 15°, z = 106°

Question 21.
The following figure is a rectangle in which x : y = 3 : 7; find the values of x and y.

Solution:
ABCD is a rectangle,
x : y = 3 : 1
In ∆BCE, ∠B = 90°
x + y = 90°
But x : y = 3 : 7
Sum of ratios = 3 + 7=10

Hence x = 27°, y = 63°

Question 22.
In the given figure, AB // EC, AB = AC and AE bisects ∠DAC. Prove that:

(i) ∠EAC = ∠ACB
(ii) ABCE is a parallelogram.
Solution:
ABCE is a quadrilateral in which AC is its diagonal and AB || EC, AB = AC
BA is produced to D
AE bisects ∠DAC
To prove:
(i) ∠EAC = ∠ACB
(ii) ABCE is a parallelogram
Proof:
(i) In ∆ABC and ∆ZAEC
AC=AC (common)
AB = CE (given)
∠BAC = ∠ACE (Alternate angle)
∆ABC = ∆AEC (SAS Axiom)
(ii) ∠BCA = ∠CAE (c.p.c.t.)
But these are alternate angles
AE || BC
But AB || EC (given)
∴ ABCD is a parallelogram


Comments

Popular posts from this blog

ICSE Solutions for Class 9 Geography – Natural Regions of the World

ICSE Solutions for Class 9 Geography – Natural Regions of the World ICSE Solutions for Class 9 Geography – Natural Regions of the World Exercises I. Short Answer Questions. Question 1. Define the term ‘natural region’. Answer: A natural region refers to a part of Earth’s surface having a particular uniformity in physical and climatic elements. Question 2. Name any four natural regions of the world. Answer: Equatorial Region, Tropical Grasslands (Savanah), Tropical Monsoon type and Tropical Deserts. Question 3. Briefly state the importance of climate. Answer: Climate imparts an important effect on human life, as the life style, occupations, trade facilities all are deeply related to the climatic behaviour of a particular natural region. Climate has a remarkable impact on human efficiency too. Question 4. State the location of the Equatorial Region. Answer: It is found in Amazon basic, Congo basin and Indonesia etc. Question 5. What is the latitudinal extent of the Monsoon climate? Answe...

ICSE Solutions for Class 8 History and Civics – The Growth of Nationalism

TIME TO LEARN I. Fill in the blanks: The Congress of Vienna was hosted by The Austrian Chancellor Duke Metternich . The American Revolution began in 1776. The first clear expression of nationalism came up with the French Revolution. The French Revolution began in 1789. England had Thirteen colonies in North America. American thinker Thomas Jefferson , asked the people to rebel against the tyrannical rule of England . A new country called The United States of America was born after the American Revolution. II. Match the contents of Column A and Column B: Answer:  III. State whether the following statements are true or false: The 13 colonies of North America were dissatisfied with the rule of the master country, England. (True) The French society was divided into three classes, each enjoying similar rights and privileges. (False)   The French Revolution began with the storming of Bastille in 1789. (True) A new constitution was framed by the French Assembly in 1785. (False) ...

ICSE Solutions for Class 9 History and Civics – India in the 6th Century BC: Rise of Jainism and Buddhism

ICSE Solutions for Class 9 History and Civics – India in the 6th Century BC: Rise of Jainism and Buddhism ICSE Solutions for Class 9 History and Civics – India in the 6th Century BC: Rise of Jainism and Buddhism EXERCISES Question 1. Give any two sources to reconstruct the two great religious movements—Jainism and the Buddhism. Answer: Literary Sources: The Jataka Tales, The Tripitakas.  Archaeological Sources: The Great Stupa at Sanchi, Samath Pillar. Question 2. Mention two causes which favored the rise of Jainism and Buddhism in the 6th Century BC. Answer: Two causes which favored the rise of Jainism and Buddhism in the 6th Century BC. were: Ritualistic Vedic Religion. Expensive Sacrifices. Question 3. Name the first and the last two Jain Answer: The first Tirthankaras was ‘Risabit known as Adi Nath. The last two Tirathankaras were ‘Parashvanath’ and ‘Mahavira’. Question 4. What was the Original name of Mahavira? Answer: The Original name of Mahavira was Vardhamana. Question...