Skip to main content

Selina Concise Mathematics Class 8 ICSE Solutions Chapter 16 Understanding Shapes

Selina Concise Mathematics Class 8 ICSE Solutions Chapter 16 Understanding Shapes

Selina Publishers Concise Mathematics Class 8 ICSE Solutions Chapter 16 Understanding Shapes (Including Polygons)

Understanding Shapes Exercise 16A – Selina Concise Mathematics Class 8 ICSE Solutions

Question 1.
State which of the following are polygons :

If the given figure is a polygon, name it as convex or concave.
Solution:
Only Fig. (ii), (iii) and (v) are polygons.
Fig. (ii) and (iii) are concave polygons while
Fig. (v) is convex.

Question 2.
Calculate the sum of angles of a polygon with :
(i) 10 sides
(ii) 12 sides
(iii) 20 sides
(iv) 25 sides
Solution:
(i) No. of sides n = 10
sum of angles of polygon = (n – 2) x 180°
= (10 – 2) x 180° = 1440°
(ii) no. of sides n = 12
sum of angles = (n – 2) x 180°
= (12 – 2) x 180° = 10 x 180° = 1800°
(iii) n = 20
Sum of angles of Polygon = (n – 2) x 180°
= (20 – 2) x 180° = 3240°
(iv) n = 25
Sum of angles of polygon = (n – 2) x 180°
= (25 – 2) x 180° = 4140°

Question 3.
Find the number of sides in a polygon if the sum of its interior angles is :
(i) 900°
(ii) 1620°
(iii) 16 right-angles
(iv) 32 right-angles.
Solution:
(i) Let no. of sides = n
Sum of angles of polygon = 900°
(n – 2) x 180° = 900°
n – 2 = 
n – 2 = 5
n = 5 + 2
n = 7
(ii) Let no. of sides = n
Sum of angles of polygon = 1620°
(n – 2) x 180° = 1620°
n – 2 = 
n – 2 = 9
n = 9 + 2
n = 11
(iii) Let no. of sides = n
Sum of angles of polygon = 16 right angles = 16 x 90 = 1440°
(n – 2) x 180° = 1440°
n – 2 = 
n – 2 = 8
n = 8 + 2
n = 10
(iv) Let no. of sides = n
Sum of angles of polygon = 32 right angles = 32 x 90 = 2880°
(n – 2) x 180° = 2880
n – 2 = 
n – 2 = 16
n = 16 + 2
n = 18

Question 4.
Is it possible to have a polygon ; whose sum of interior angles is :
(i) 870°
(ii) 2340°
(iii) 7 right-angles
(iv) 4500°
Solution:
(i) Let no. of sides = n
Sum of angles = 870°
(n – 2) x 180° = 870°
n – 2 = 
n – 2 = 
n =   + 2
n = 
Which is not a whole number.
Hence it is not possible to have a polygon, the sum of whose interior angles is 870°
(ii) Let no. of sides = n
Sum of angles = 2340°
(n – 2) x 180° = 2340°
n – 2 = 
n – 2 = 13
n = 13 + 2 = 15
Which is a whole number.
Hence it is possible to have a polygon, the sum of whose interior angles is 2340°.
(iii) Let no. of sides = n
Sum of angles = 7 right angles = 7 x 90 = 630°
(n – 2) x 180° = 630°
n – 2 = 
n – 2 = 
n =   + 2
n = 
Which is not a whole number. Hence it is not possible to have a polygon, the sum of whose interior angles is 7 right-angles.
(iv) Let no. of sides = n
(n – 2) x 180° = 4500°
n – 2 = 
n – 2 = 25
n = 25 + 2
n = 27
Which is a whole number.
Hence it is possible to have a polygon, the sum of whose interior angles is 4500°.

Question 5.
(i) If all the angles of a hexagon are equal ; find the measure of each angle.
(ii) If all the angles of a 14-sided figure are equal ; find the measure of each angle.
Solution:
(i) No. of sides of hexagon, n = 6
Let each angle be = x°
Sum of angles = 6x°
(n – 2) x 180° = Sum of angles
(6 – 2) x 180° = 6x°
4 x 180 = 6x

Question 6.
Find the sum of exterior angles obtained on producing, in order, the sides of a polygon with :
(i) 7 sides
(ii) 10 sides
(iii) 250 sides.
Solution:
(i) No. of sides n = 7
Sum of interior & exterior angles at one vertex = 180°


Question 7.
The sides of a hexagon are produced in order. If the measures of exterior angles so obtained are (6x – 1)°, (10x + 2)°, (8x + 2)° (9x – 3)°, (5x + 4)° and (12x + 6)° ; find each exterior angle.
Solution:
Sum of exterior angles of hexagon formed by producing sides of order = 360°

i.e. 41° ; 72°, 58° ; 60° ; 39° and 90°

Question 8.
The interior angles of a pentagon are in the ratio 4 : 5 : 6 : 7 : 5. Find each angle of the pentagon.
Solution:
Let the interior angles of the pentagon be 4x, 5x, 6x, 7x, 5x.
Their sum = 4x + 5x + 6x + 7x + 5x = 21x

Question 9.
Two angles of a hexagon are 120° and 160°. If the remaining four angles are equal, find each equal angle.
Solution:
Two angles of a hexagon are 120°, 160°
Let remaining four angles be x, x, x and x.
Their sum = 4x + 280°
But sum of all the interior angles of a hexagon

Question 10.
The figure, given below, shows a pentagon ABCDE with sides AB and ED parallel to each other, and ∠B : ∠C : ∠D = 5 : 6 : 7.
  
(i) Using formula, find the sum of interior angles of the pentagon.
(ii) Write the value of ∠A + ∠E
(iii) Find angles B, C and D.
Solution:
(i) Sum of interior angles of the pentagon

Question 11.
Two angles of a polygon are right angles and the remaining are 120° each. Find the number of sides in it.
Solution:
Let number of sides = n

n = 
n = 5

Question 12.
In a hexagon ABCDEF, side AB is parallel to side FE and ∠B : ∠C : ∠D : ∠E = 6 : 4 : 2 : 3. Find ∠B and ∠D.
Solution:

Question 13.
the angles of a hexagon are x + 10°, 2x + 20°, 2x – 20°, 3x – 50°, x + 40° and x + 20°. Find x.
Solution:


Question 14.
In a pentagon, two angles are 40° and 60°, and the rest are in the ratio 1 : 3 : 7. Find the biggest angle of the pentagon.
Solution:
In a pentagon, two angles are 40° and 60° Sum of remaining 3 angles = 3 x 180°
= 540° – 40° – 60° = 540° – 100° = 440°
Ratio in these 3 angles =1 : 3 : 7
Sum of ratios =1 + 3 + 7 = 11
Biggest angle =   = 280°

Understanding Shapes Exercise 16B – Selina Concise Mathematics Class 8 ICSE Solutions

Question 1.
Fill in the blanks :
In case of regular polygon, with :

Solution:


Question 2.
Find the number of sides in a regular polygon, if its each interior angle is :
(i) 160°
(ii) 135°
(iii)   of a right-angle
Solution:


Question 3.
Find the number of sides in a regular polygon, if its each exterior angle is :
(i)   of a right angle
(ii) two-fifth of a right-angle.
Solution:
(i) Each exterior angle =   of a right angle
=   x 90
= 30°
Let number of sides = n

Question 4.
Is it possible to have a regular polygon whose each interior angle is :
(i) 170°
(ii) 138°
Solution:
(i) No. of sides = n
each interior angle = 170°


Which is not a whole number.
Hence it is not possible to have a regular polygon having interior angle of 138°.
Question 5.
Is it possible to have a regular polygon whose each exterior angle is :
(i) 80°
(ii) 40% of a right angle.
Solution:
(i) Let no. of sides = n each exterior angle = 80°

Which is not a whole number.
Hence it is not possible to have a regular polygon whose each exterior angle is of 80°.
(ii) Let number of sides = n
Each exterior angle = 40% of a right angle

Which is a whole number.
Hence it is possible to have a regular polygon whose each exterior angle is 40% of a right angle.

Question 6.
Find the number of sides in a regular polygon, if its interior angle is equal to its exterior angle.
Solution:
Let each exterior angle or interior angle be = x°

Question 7.
The exterior angle of a regular polygon is one-third of its interior angle. Find the number of sides in the polygon.
Solution:
Let interior angle = x°
Exterior angle =   x°


Question 8.
The measure of each interior angle of a regular polygon is five times the measure of its exterior angle. Find :
(i) measure of each interior angle ;
(ii) measure of each exterior angle and
(iii) number of sides in the polygon.
Solution:
Let exterior angle = x°
Interior angle = 5x°
x + 5x = 180°
6x = 180°
x = 30°
Each exterior angle = 30°
Each interior angle = 5 x 30° = 150°
Let no. of sides = n

Question 9.
The ratio between the interior angle and the exterior angle of a regular polygon is 2 : 1. Find :
(i) each exterior angle of the polygon ;
(ii) number of sides in the polygon
Solution:
Interior angle : exterior angle = 2 : 1
Let interior angle = 2x° & exterior angle = x°

Question 10.
The ratio between the exterior angle and the interior angle of a regular polygon is 1 : 4. Find the number of sides in the polygon.
Solution:
Let exterior angle = x° & interior angle = 4x°

Question 11.
The sum of interior angles of a regular polygon is twice the sum of its exterior angles. Find the number of sides of the polygon.
Solution:
Let number of sides = n
Sum of exterior angles = 360°
Sum of interior angles = 360° x 2 = 720°
Sum of interior angles = (n – 2) x 180°
720° = (n – 2) x 180°
n – 2 = 
n – 2 = 4
n = 4 + 2
n = 6

Question 12.
AB, BC and CD are three consecutive sides of a regular polygon. If angle BAC = 20° ; find :
(i) its each interior angle,
(ii) its each exterior angle
(iii) the number of sides in the polygon.
Solution:

Question 13.
Two alternate sides of a regular polygon, when produced, meet at the right angle. Calculate the number of sides in the polygon.
Solution:

Question 14.
In a regular pentagon ABCDE, draw a diagonal BE and then find the measure of:
(i) ∠BAE
(ii) ∠ABE
(iii) ∠BED
Solution:
(i) Since number of sides in the pentagon = 5
Each exterior angle =   = 72°
∠BAE = 180° – 72°= 108°

Question 15.
The difference between the exterior angles of two regular polygons, having the sides equal to (n – 1) and (n + 1) is 9°. Find the value of n.
Solution:
We know that sum of exterior angles of a polynomial is 360°
(i) If sides of a regular polygon = n – 1


Question 16.
If the difference between the exterior angle of a n sided regular polygon and an (n + 1) sided regular polygon is 12°, find the value of n.
Solution:
We know that sum of exterior angles of a polygon = 360°
Each exterior angle of a regular polygon of 360°


Question 17.
The ratio between the number of sides of two regular polygons is 3 : 4 and the ratio between the sum of their interior angles is 2 : 3. Find the number of sides in each polygon.
Solution:
Ratio of sides of two regular polygons = 3 : 4
Let sides of first polygon = 3n
and sides of second polygon = 4n
Sum of interior angles of first polygon

Question 18.
Three of the exterior angles of a hexagon are 40°, 51 ° and 86°. If each of the remaining exterior angles is x°, find the value of x.
Solution:
Sum of exterior angles of a hexagon = 4 x 90° = 360°
Three angles are 40°, 51° and 86°
Sum of three angle = 40° + 51° + 86° = 177°
Sum of other three angles = 360° – 177° = 183°
Each angle is x°
3x = 183°
x = 
Hence x = 61

Question 19.
Calculate the number of sides of a regular polygon, if:
(i) its interior angle is five times its exterior angle.
(ii) the ratio between its exterior angle and interior angle is 2 : 7.
(iii) its exterior angle exceeds its interior angle by 60°.
Solution:
Let number of sides of a regular polygon = n
(i) Let exterior angle = x
Then interior angle = 5x
x + 5x = 180°
=> 6x = 180°


Question 20.
The sum of interior angles of a regular polygon is thrice the sum of its exterior angles. Find the number of sides in the polygon.
Solution:
Sum of interior angles = 3 x Sum of exterior angles
Let exterior angle = x
The interior angle = 3x
x + 3x=180°
=> 4x = 180°
=> x = 
=> x = 45°
Number of sides =   = 8

Understanding Shapes Exercise 16C – Selina Concise Mathematics Class 8 ICSE Solutions

Question 1.
Two angles of a quadrilateral are 89° and 113°. If the other two angles are equal; find the equal angles.
Solution:
Let the other angle = x°
According to given,
89° + 113° + x° + x° = 360°
2x° = 360° – 202°
2x° = 158°
x° = 
other two angles = 79° each

Question 2.
Two angles of a quadrilateral are 68° and 76°. If the other two angles are in the ratio 5 : 7; find the measure of each of them.
Solution:
Two angles are 68° and 76°
Let other two angles be 5x and 7x
68° + 76°+ 5x + 7x = 360°
12x + 144° = 360°
12x = 360° – 144°
12x = 216°
x = 18°
angles are 5x and 7x
i.e. 5 x 18° and 7 x 18° i.e. 90° and 126°

Question 3.
Angles of a quadrilateral are (4x)°, 5(x+2)°, (7x – 20)° and 6(x+3)°. Find :
(i) the value of x.
(ii) each angle of the quadrilateral.
Solution:
Angles of quadrilateral are,


Question 4.
Use the information given in the following figure to find :
(i) x
(ii) ∠B and ∠C

Solution:

Question 5.
In quadrilateral ABCD, side AB is parallel to side DC. If ∠A : ∠D = 1 : 2 and ∠C : ∠B = 4 : 5
(i) Calculate each angle of the quadrilateral.
(ii) Assign a special name to quadrilateral ABCD
Solution:

Question 6.
From the following figure find ;
(i) x
(ii) ∠ABC
(iii) ∠ACD
Solution:

(i) In Quadrilateral ABCD,
x + 4x + 3x + 4x + 48° = 360°
12x = 360° – 48°
12x = 312

Question 7.
Given : In quadrilateral ABCD ; ∠C = 64°, ∠D = ∠C – 8° ; ∠A = 5(a+2)° and ∠B = 2(2a+7)°.
Calculate ∠A.
Solution:
∠C = 64° (Given)
∠D = ∠C – 8° = 64°- 8° = 56°
∠A = 5(a+2)°
∠B = 2(2a+7)°
Now ∠A + ∠B + ∠C + ∠D = 360°
5(a+2)° + 2(2a+7)° + 64° + 56° = 360°
5a + 10 + 4a + 14° + 64° + 56° = 360°
9a + 144° = 360°
9a = 360° – 144°
9a = 216°
a = 24°
∠A = 5 (a + 2) = 5(24+2) = 130°

Question 8.
In the given figure : ∠b = 2a + 15 and ∠c = 3a + 5; find the values of b and c.

Solution:
Stun of angles of quadrilateral = 360°
70° + a + 2a + 15 + 3a + 5 = 360°
6a + 90° = 360°
6a = 270°
a = 45°
b = 2a + 15 = 2 x 45 + 15 = 105°
c = 3a + 5 = 3 x 45 + 5 = 140°
Hence ∠b and ∠c are 105° and 140°

Question 9.
Three angles of a quadrilateral are equal. If the fourth angle is 69°; find the measure of equal angles.
Solution:
Let each equal angle be x°
x + x + x + 69° = 360°

3x = 360°- 69
3x = 291
x = 97°
Each, equal angle = 97°

Question 10.
In quadrilateral PQRS, ∠P : ∠Q : ∠R : ∠S = 3 : 4 : 6 : 7.
Calculate each angle of the quadrilateral and then prove that PQ and SR are parallel to each other
(i) Is PS also parallel to QR ?
(ii) Assign a special name to quadrilateral PQRS.
Solution:

Question 11.
Use the informations given in the following figure to find the value of x.

Solution:
Take A, B, C, D as the vertices of Quadrilateral and BA is produced to E (say).
Since ∠EAD = 70°
∠DAB = 180° – 70°= 110°
[EAB is a straight line and AD stands on it ∠EAD+ ∠DAB = 180°]
110° + 80° + 56° + 3x – 6° = 360°
[sum of interior angles of a quadrilateral = 360°]
3x = 360° – 110° – 80° – 56° + 6°
3x = 360° – 240° = 120°
x = 40°

Question 12.
The following figure shows a quadrilateral in which sides AB and DC are parallel. If ∠A : ∠D = 4 : 5, ∠B = (3x – 15)° and ∠C = (4x + 20)°, find each angle of the quadrilateral ABCD.
  
Solution:
Let ∠A = 4x
∠D = 5x
Since ∠A + ∠D = 180° [AB||DC]
4x + 5x = 180°
=> 9x = 180°
=> x = 20°
∠A = 4 (20) = 80°,
∠D = 5 (20) = 100°
Again ∠B + ∠C = 180° [ AB||DC]
3x – 15° + 4x + 20° = 180°
7x = 180° – 5°
=> 7x = 175°
=> x = 25°
∠B = 75° – 15° = 60°
and ∠C = 4 (25) + 20 = 100°+ 20°= 120°

Question 13.
Use the following figure to find the value of x

Solution:
The sum of exterior angles of a quadrilateral

=> y + 80° + 60° + 90° = 360°
=> y + 230° = 360°
=> y = 360° – 230° = 130°
At vertex A,
∠y + ∠x = 180° (Linear pair)
x = 180° – 130°
=> x = 50°

Question 14.
ABCDE is a regular pentagon. The bisector of angle A of the pentagon meets the side CD in point M. Show that ∠AMC = 90°.
Solution:

Given : ABCDE is a regular pentagon.
The bisector ∠A of the pentagon meets the side CD at point M.
To prove : ∠AMC = 90°
Proof: We know that, the measure of each interior angle of a regular pentagon is 108°.
∠BAM =   x 108° = 54°
Since, we know that the sum of a quadrilateral is 360°
In quadrilateral ABCM, we have
∠BAM + ∠ABC + ∠BCM + ∠AMC = 360°
54° + 108° + 108° + ∠AMC = 360°
∠AMC = 360° – 270°
∠AMC = 90°

Question 15.
In a quadrilateral ABCD, AO and BO are bisectors of angle A and angle B respectively. Show that:
∠AOB =   (∠C + ∠D)
Solution:
Given : AO and BO are the bisectors of ∠A and ∠B respectively.
∠1 = ∠4 and ∠3 = ∠5 ……..(i)

To prove : ∠AOB =   (∠C + ∠D)
Proof: In quadrilateral ABCD
∠A + ∠B + ∠C + ∠D = 360°
  (∠A + ∠B + ∠C + ∠D) = 180° …………(ii)
Now in ∆AOB
∠1 + ∠2 + ∠3 = 180° ………(iii)
Equating equation (ii) and equation (iii), we get
∠1 + ∠2 + ∠3 = ∠A + ∠B +   (∠C + ∠D)
∠1 + ∠2 + ∠3 = ∠1 + ∠3 +   (∠C + ∠D)
∠2 =   (∠C + ∠D)
∠AOB =   (∠C + ∠D)
Hence proved.


Comments

Popular posts from this blog

ICSE Solutions for Class 9 Geography – Natural Regions of the World

ICSE Solutions for Class 9 Geography – Natural Regions of the World ICSE Solutions for Class 9 Geography – Natural Regions of the World Exercises I. Short Answer Questions. Question 1. Define the term ‘natural region’. Answer: A natural region refers to a part of Earth’s surface having a particular uniformity in physical and climatic elements. Question 2. Name any four natural regions of the world. Answer: Equatorial Region, Tropical Grasslands (Savanah), Tropical Monsoon type and Tropical Deserts. Question 3. Briefly state the importance of climate. Answer: Climate imparts an important effect on human life, as the life style, occupations, trade facilities all are deeply related to the climatic behaviour of a particular natural region. Climate has a remarkable impact on human efficiency too. Question 4. State the location of the Equatorial Region. Answer: It is found in Amazon basic, Congo basin and Indonesia etc. Question 5. What is the latitudinal extent of the Monsoon climate? Answe...

ICSE Solutions for Class 8 History and Civics – The Growth of Nationalism

TIME TO LEARN I. Fill in the blanks: The Congress of Vienna was hosted by The Austrian Chancellor Duke Metternich . The American Revolution began in 1776. The first clear expression of nationalism came up with the French Revolution. The French Revolution began in 1789. England had Thirteen colonies in North America. American thinker Thomas Jefferson , asked the people to rebel against the tyrannical rule of England . A new country called The United States of America was born after the American Revolution. II. Match the contents of Column A and Column B: Answer:  III. State whether the following statements are true or false: The 13 colonies of North America were dissatisfied with the rule of the master country, England. (True) The French society was divided into three classes, each enjoying similar rights and privileges. (False)   The French Revolution began with the storming of Bastille in 1789. (True) A new constitution was framed by the French Assembly in 1785. (False) ...

ICSE Solutions for Class 9 History and Civics – India in the 6th Century BC: Rise of Jainism and Buddhism

ICSE Solutions for Class 9 History and Civics – India in the 6th Century BC: Rise of Jainism and Buddhism ICSE Solutions for Class 9 History and Civics – India in the 6th Century BC: Rise of Jainism and Buddhism EXERCISES Question 1. Give any two sources to reconstruct the two great religious movements—Jainism and the Buddhism. Answer: Literary Sources: The Jataka Tales, The Tripitakas.  Archaeological Sources: The Great Stupa at Sanchi, Samath Pillar. Question 2. Mention two causes which favored the rise of Jainism and Buddhism in the 6th Century BC. Answer: Two causes which favored the rise of Jainism and Buddhism in the 6th Century BC. were: Ritualistic Vedic Religion. Expensive Sacrifices. Question 3. Name the first and the last two Jain Answer: The first Tirthankaras was ‘Risabit known as Adi Nath. The last two Tirathankaras were ‘Parashvanath’ and ‘Mahavira’. Question 4. What was the Original name of Mahavira? Answer: The Original name of Mahavira was Vardhamana. Question...