Skip to main content

Selina Concise Mathematics Class 6 ICSE Solutions – Polygons

Selina Concise Mathematics Class 6 ICSE Solutions – Polygons

Selina Concise Mathematics Class 6 ICSE Solutions – Polygons


IMPORTANT POINTS
1. Polygon : A closed plane geometrical figure, bounded by atleast three line segments, is called a
polygon.
The adjoining figure is a polygon as it is :

(i) Closed
(ii) bounded by five line segments AB, BC, CD, DE and AE.
Also, it is clear from the given polygon that:
(i) the line segments AB, BC, CD, DE and AE intersect at their end points.
(ii) two line segments, with a common vertex, are not collinear i.e. the angle at any vertex is not 180°.
A polygon is named according to the number of sides (line-segments) in it:
Note : No. of sides : 3 4 5 6
Name of polygon : Triangle Quadrilateral Pentagon Hexagon
2. Sum of Interior Angles of a Polygon
1. Triangle : Students already know that the sum of interior angles of a triangle is always 180°.
i.e. for ∆ ABC, ∠B AC + ∠ABC + ∠ACB = 180°
⇒ ZA + ZB + ZC = 180°

2. Quadrilateral : Consider a quadrilateral ABCD as shown alongside.
If diagonal AC of the quadrilaterals drawn, the quadrilateral will be divided into two triangles ABC and ADC.
Since, the sum of interior angles of a triangle is 180°.

∴ In ∆ ABC, ∠ABC + ∠BAC +∠ACB = 180°
And, in ∆ ADC ∠DAC + ∠ADC + ∠ACD = 180°
Adding we get:
∠ABC + ∠BAC +∠ACB + ∠DAC + ∠ADC + ∠ACD = 180° +180°
⇒(∠BAC + ∠DAC) + ∠ABC + (∠ACB + ∠ACD) + ∠ADC = 360°
⇒∠BAD + ∠ABC + ∠BCD + ∠ADC = 360°
⇒ ∠A + ∠B + ∠C + ∠D = 360°
Alternative method : On drawing the diagonal AC, the given quadrilateral is divided into two triangles. And, we know the sum of the interior angles of a triangle is 180°.
∴ Sum of interior angles of the quadrilateral ABCD
= Sum of interior angles of ∆ ABC + sum of interior angles of ∆ ADC = 180°+ 180° = 360°
3. Pentagon : Consider a pentagon ABCDE as shown alongside.
On joining CA and CE, the given pentagon is divided into three triangles ABC, CDE and ACE.

Since, the sum of the interior angles of a triangle is 180°
Sum of the interior angles of the pentagon ABCDE = Sum of interior angles of (∆ ABC + ∆ CDE + ∆ACE)
= 180° + 180° + 180° = 540°
4. Hexagon :
It is clear from the given figure that the sum of the interior angles of the hexagon ABCDEF.

= Sum of inteior angles of
(∆ABC + ∆ ACF + ∆ FCE + ∆ ECD)
= 180° + 180° + 180° + 180° = 720°
3. Using Formula : The sum of interior angles of a polygon can also be obtained by using the following formula:
Note : Sum of interior angles of a polygon = (n – 2) x 180°
where, n = number of sides of the polygon.

EXERCISE 28 (A)
Question 1.
State, which of the following are polygons :

Solution:
Only figure (ii) and (iii) are polygons.

Question 2.
Find the sum of interior angles of a polygon with :
(i) 9 sides
(ii) 13 sides
(iii) 16 sides
Solution:
(i) 9 sides
No. of sides n = 9
∴Sum of interior angles of polygon = (2n – 4) x 90°
= (2 x 9 – 4) x 90°
= 14 x 90°= 1260°
(ii) 13 sides
No. of sides n = 13
∴ Sum of interior angles of polygon = (2n – 4) x 90° = (2 x 13 – 4) x 90° = 1980°
(iii) 16 sides
No. of sides n = 16
∴ Sum of interior angles of polygon = (2n – 4) x 90°
= (2 x 16 – 4) x 90°
= (32 – 4) x 90° = 28 x 90°
= 2520°

Question 3.
Find the number of sides of a polygon, if the sum of its interior angles is :
(i) 1440°
(ii) 1620°
Solution:


Question 4.
Is it possible to have a polygon, whose sum of interior angles is 1030°.
Solution:


Question 5.
(i) If all the angles of a hexagon arc equal, find the measure of each angle.
(ii) If all the angles of an octagon are equal, find the measure of each angle,
Solution:

Question 6.
One angle of a quadrilateral is 90° and all other angles are equal ; find each equal angle.
Solution:

Question 7.
If angles of quadrilateral are in the ratio 4 : 5 : 3 : 6 ; find each angle of the quadrilateral.
Solution:

Question 8.
If one angle of a pentagon is 120° and each of the remaining four angles is x°, find the magnitude of x.
Solution:
One angle of a pentagon = 120°
Let remaining four angles be x, x, x and x
Their sum = 4x + 120°
But sum of all the interior angles of a pentagon = (2n – 4) x 90°
= (2 x 5 – 4) x 90° = 540°
= 3 x 180° = 540°
∴ 4x+120o° = 540°
4x = 540° – 120°
4x = 420
x =   ⇒ x = 105°
∴Equal angles are 105° (Each)

Question 9.
The angles of a pentagon are in the ratio 5 : 4 : 5 : 7 : 6 ; find each angle of the pentagon.
Solution:

Question 10.
Two angles of a hexagon are 90° and 110°. If the remaining four angles arc equal, find each equal angle.
Solution:

EXERCISE 28 (B)
Question 1.
Fill in the blanks :
In case of regular polygon, with

Solution:



Question 2.
Find the number of sides in a regular polygon, if its each interior angle is :
(i) 160°
(ii) 150°
Solution:

Question 3.
Find number of sides in a regular polygon, if its each exterior angle is :
(i) 30°
(ii) 36°
Solution:


Question 4.
Is it possible to have a regular polygon whose each interior angle is :
(i) 135°
(ii) 155°
Solution:


Question 5.
Is it possible to have a regular polygon whose each exterior angle is :
(i) 100°
(ii) 36°
Solution:


Question 6.
The ratio between the interior angle and the exterior angle of a regular polygon is 2 : 1. Find :
(i) each exterior angle of this polygon.
(ii) number of sides in the polygon.
Solution:



Comments

Popular posts from this blog

ICSE Solutions for Class 9 Geography – Natural Regions of the World

ICSE Solutions for Class 9 Geography – Natural Regions of the World ICSE Solutions for Class 9 Geography – Natural Regions of the World Exercises I. Short Answer Questions. Question 1. Define the term ‘natural region’. Answer: A natural region refers to a part of Earth’s surface having a particular uniformity in physical and climatic elements. Question 2. Name any four natural regions of the world. Answer: Equatorial Region, Tropical Grasslands (Savanah), Tropical Monsoon type and Tropical Deserts. Question 3. Briefly state the importance of climate. Answer: Climate imparts an important effect on human life, as the life style, occupations, trade facilities all are deeply related to the climatic behaviour of a particular natural region. Climate has a remarkable impact on human efficiency too. Question 4. State the location of the Equatorial Region. Answer: It is found in Amazon basic, Congo basin and Indonesia etc. Question 5. What is the latitudinal extent of the Monsoon climate? Answe...

ICSE Solutions for Class 8 History and Civics – The Growth of Nationalism

TIME TO LEARN I. Fill in the blanks: The Congress of Vienna was hosted by The Austrian Chancellor Duke Metternich . The American Revolution began in 1776. The first clear expression of nationalism came up with the French Revolution. The French Revolution began in 1789. England had Thirteen colonies in North America. American thinker Thomas Jefferson , asked the people to rebel against the tyrannical rule of England . A new country called The United States of America was born after the American Revolution. II. Match the contents of Column A and Column B: Answer:  III. State whether the following statements are true or false: The 13 colonies of North America were dissatisfied with the rule of the master country, England. (True) The French society was divided into three classes, each enjoying similar rights and privileges. (False)   The French Revolution began with the storming of Bastille in 1789. (True) A new constitution was framed by the French Assembly in 1785. (False) ...

ICSE Solutions for Class 9 History and Civics – India in the 6th Century BC: Rise of Jainism and Buddhism

ICSE Solutions for Class 9 History and Civics – India in the 6th Century BC: Rise of Jainism and Buddhism ICSE Solutions for Class 9 History and Civics – India in the 6th Century BC: Rise of Jainism and Buddhism EXERCISES Question 1. Give any two sources to reconstruct the two great religious movements—Jainism and the Buddhism. Answer: Literary Sources: The Jataka Tales, The Tripitakas.  Archaeological Sources: The Great Stupa at Sanchi, Samath Pillar. Question 2. Mention two causes which favored the rise of Jainism and Buddhism in the 6th Century BC. Answer: Two causes which favored the rise of Jainism and Buddhism in the 6th Century BC. were: Ritualistic Vedic Religion. Expensive Sacrifices. Question 3. Name the first and the last two Jain Answer: The first Tirthankaras was ‘Risabit known as Adi Nath. The last two Tirathankaras were ‘Parashvanath’ and ‘Mahavira’. Question 4. What was the Original name of Mahavira? Answer: The Original name of Mahavira was Vardhamana. Question...